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Abstract

In this paper an ample class of non-trivial harmonic maps of D ½ C to
GL2C are presented. Several of them are related to some quasi-conformal
mappings. These can be applied, in turn, to construct other harmonic
maps from D ½ C into GLnC for n > 2.

1 Introduction

Recently the harmonic maps of a compact domain D in the complex plane into
a Lie group have been extensively studied [2], [3] and [6] and their references,
in particular in [6] is given a comprehensive treatment of harmonic maps into
U (n). On the other hand, harmonic maps arise in physics in a natural manner as
solutions of the Chiral model (see [7], where only the case n = 2 was considered).

One of the techniques used in this area for almost 30 years has consisted of
reformulating the harmonic map equation as an integrable system (for instance
as a Zakharov-Shabat type equation) and lately, this development has been
particularly strong in Great Britain. In the case, of a matrix Lie group, as
is well-known, the two-dimensional Toda lattices have a relevant role. In this
paper, non-trivial new harmonic maps into U (2)C = GL2C are presented. But,
our approach instead of starting with some integrable system consists of studying
the harmonic map equation directly. The idea behind our method is very simple:
the solutions are expressed in the form of full Kostant-Toda matrices, which
linearize the expression of the harmonic map equation by components. Hence,
we make the results more explicit and their proofs very clear. On the other
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hand, from our point of view harmonic maps Á : C ! GL2C turn out to be
related to quasi-conformal mappings.

Let G be a matrix Lie group; the equation for a harmonic map Á : C ! G
is the following partial di¤erential equation

¡
Á¡1Áz

¢
z

+
¡
Á¡1Áz

¢
z

= 0, (1)

where z = x + iy and the overbar means complex conjugation. It is well known
that the equation (1) is the Euler-Lagrange equation for the fuctional Á !R

D
kdÁk2 where D is a compact domain of C, i.e., ÁjD satis…es the harmonic

map equation if and only if it is a critical point of this functional.
On the other hand, the harmonic map equation is equivalent to the system

Uz ¡ Vz = [U;V ] (2)

Uz + Vz = 0

where U;V : C ! g. Here g is the Lie algebra of G, see [2] and [3] for more
details. It is well-known that the …rst equation of (2) belongs to a distinguished
class of PDEs known as integrable systems (it is the Zakharov-Shabat type
equation).

One comment is in order. The equations in (2) can be written as only one
equation using a complex parameter establishing relations between harmonic
maps and loop groups, Riemann-Hilbert problems, etc.

2 Full Kostant-Toda harmonic maps

The aim of this section is to present several non-trivial families of harmonic
maps of D into GL2C and starting from there obtain a large set of solutions of
the matrix Zakharov-Shabat type equation. The results of this section can be
considered as analogous to the “Weierstrass formula in immersion theory”, by
means of which harmonic maps D ! GL2C are described explicitly in terms of
two functions (in some cases of two quasi-conformal mappings) on D.

Let D be a compact domain of C and ¹ (z) = dp
dz (z) =dq

dz (z) a smooth function
de…ned in D. We will assume that, dq

dz (z) 6= 0 for all z 2 D, then we have

Lemma 1 The Beltrami type equation

@u

@z
= ¹ (z)

@u

@z
z 2 D (3)

has a solution of the form

u (z; z) = q(z) + p(z) + u0

where u0 2 C.
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Proof. The Lemma can be proved directly.
Note that when j¹j < k < 1, the solution u (z; z) of (3) will be a quasi-

conformal mapping (see [1]).
Thanks to this simple Lemma we can …nd some non-trivial solutions of (1),

that throughout this paper we will call full Kostant-Toda solutions for the har-
monic map equation. In what follows Á is an invertible matrix of the form

Á =

µ
a 1
b c

¶
with b ¡ ac = 1: (4)

It turns out that matrices of the form (4) are generally not invertible (for
instance, when c = ¡a and b = ¡a2), hence the condition b ¡ ac = 1; in this
case, we have

Á¡1 =

µ ¡c 1
b ¡a

¶
:

A matrix of the form (4) with b ¡ ac = 1 will be called a full Kostant-Toda
matrix and a full Kostant harmonic map if this is a solution of the harmonic
map equation.

Let us suppose that a, b and c depend on variables z and z, then

Á¡1Áz =

µ
bz ¡ caz cz

baz ¡ abz ¡acz

¶
, Á¡1Áz =

µ
bz ¡ caz cz

baz ¡ abz ¡acz

¶

therefore, we have

¡
Á¡1Áz

¢
z

=

µ
bzz ¡ czaz ¡ cazz czz

bzaz ¡ azbz + bazz ¡ abzz ¡azcz ¡ aczz

¶

and

¡
Á¡1Áz

¢
z

=

µ
bzz ¡ czaz ¡ cazz czz

bzaz ¡ azbz + bazz ¡ abzz ¡azcz ¡ aczz

¶
:

Now, in order for the full Kostant-Toda matrix Á to be a solution of (1) we must
do

µ
2bzz ¡ czaz ¡ czaz ¡ 2cazz 2czz

2bazz ¡ 2abzz ¡azcz ¡ azcz ¡ 2aczz

¶
= 0, (5)

thus, we have 2czz = 0. Below, we choose

c (z; z) = g (z) + f (z) + c0 (6)
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where c0 2 C and g (z), f (z) are smooth functions of each argument in a domain
D of the complex plane. Thus, the function a (z; z) is seen to be a solution of
the following equation

@a

@z
= ¡

df
dz

(z)
dg
dz (z)

@a

@z
z 2 D (7)

if dg
dz (z) 6= 0 in D; in the rest of this section we assume that such a condition is

satis…ed. On the other hand,

2bzz ¡ 2cazz = 0; 2bazz ¡ 2abzz = 0 (8)

multiplying the …rst equation of (8) by a we have abzz = acazz, now having in
mind that b ¡ ac = 1 and the last relation, from the second equation of (8) we
have that, azz = 0; also it is easy to see that bzz = 0. Then, a and b can be
functions of the form a (z; z) = m (z) + n (z) + a0, b (z; z) = h (z) + i (z) + b0

where a0, b0 2 C. By Lemma 1, one can readily see that the following functions
are solutions of (7)

a) a (z; z) = g(z) ¡ f(z) + a0 (9)

b) a (z; z) = ¡g(z) + f(z) + a0

Recall that, we have established a relationship between a, b and c: b¡ac = 1.
In the case a) the function b (z; z) is given explicitly by

a) b (z; z) = g2 (z) + (a0 + c0) g (z) ¡ f2 (z) + (a0 ¡ c0) f (z) (10)

+1 + a0c0

in fact,

1 = (h (z) + i (z) + b0) ¡ (g(z) ¡ f(z) + a0) (g (z) + f (z) + c0)

= (h (z) + i (z) + b0) ¡ g2(z) ¡ g(z)f (z) ¡ c0g(z) + g(z)f (z) + f2(z)

+c0f(z) ¡ a0g(z) ¡ a0f(z) ¡ a0c0:

become (10). With similar arguments we can calculate b (z; z) in the case b),

b) b (z; z) =
¡¡g2(z) + (a0 ¡ c0)g(z)

¢
+

¡
f2(z) + (a0 + c0)f(z)

¢
(11)

+1 + a0c0

In summary, we have the following result:.
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Theorem 2 Let g and f be two functions de…ned on D (in particular they can
be rational functions). Then, the full Kostant-Toda matrices

Á1 =

0
@

g(z) ¡ f (z) + a0 1
g2(z) ¡ f2 (z) + (a0 + c0)g(z)+

(a0 ¡ c0)f (z) + 1 + a0c0

g(z) + f (z)
+c0

1
A (12)

and

Á2 =

0
@

¡g(z) + f(z) + a0 1
¡g2(z) + (a0 ¡ c0)g(z) + f2(z)+

(a0 + c0)f(z) + 1 + a0c0

g(z) + f (z)
+c0

1
A (13)

are full Kostant-Toda harmonic maps of D to GL2C.

The following Theorem establishes a very interesting property of the full
Kostant-Toda harmonic maps.

Theorem 3 If Á =

µ
a 1
b c

¶
is a full Kostant-Toda harmonic map, then

Áa =

µ
c 1
b a

¶

is also a full Kostant-Toda harmonic harmonic map of D into GL2C.

Proof. The role of the functions a and c in (5) as also in the relation
b¡ac = 1, can be interchanged. In fact, both cases imply the following equations

czz = 0; azz = 0; bzz = 0; azcz + azcz = 0; b ¡ ac = 1.

Corollary 4 Associated to Á1 and Á2 of the Theorem 2 are the following full
Kostant-Toda harmonic maps

Áa
1 =

0
@

g(z) + f (z) + c0 1
g2(z) ¡ f2 (z) + (a0 + c0)g(z)+

(a0 ¡ c0)f (z) + 1 + a0c0

g(z) ¡ f (z)
+a0

1
A

and

Áa
2 =

0
@

g(z) + f(z) + c0 1
¡g2(z) + (a0 ¡ c0)g(z) + f2(z)+

(a0 + c0)f(z) + 1 + a0c0

¡g(z) + f (z)
+a0

1
A
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As a consequence of Theorem 2 we have the following solutions of the matrix
Zakharov-Shabat type equation.

Example 5 Let H = Á1 for g(z) = z and f (z) = z; then

Hz =

µ
1 0

2z + (a0 + c0) 1

¶
Hz =

µ
1 0

¡2z + (a0 ¡ c0) 1

¶

and

H¡1 =

µ ¡z ¡ z ¡ c0 1
z2 ¡ z2 + (a0 + c0)z + (a0 ¡ c0)z + 1 + a0c0 ¡z + z ¡ a0

¶
.

So, de…ning

U = H¡1Hz =

µ
z ¡ z + a0 1

¡z2 ¡ z2 + 2zz + 2a0 (z ¡ z) + 1 ¡ a2
0 ¡z + z ¡ a0

¶
;

V = H¡1Hz =

µ
z ¡ z + a0 1

¡z2 ¡ z2 + 2zz + 2a0 (z ¡ z) ¡ 1 ¡ a2
0 ¡z + z ¡ a0

¶

we compute now Uz ¡Vz, Uz +Vz, [U; V ] with a0 = 0. A direct calculation gives
Uz + Vz = 0, on the other hand we have

Uz ¡ Vz =

µ ¡2 0
4(z ¡ z) 2

¶
(14)

…nally

UV =

µ
¡1 0

2(z ¡ z) 1

¶
, V U =

µ
1 0

2(z ¡ z) ¡1

¶

then

[U;V ] =

µ ¡2 0
4(z ¡ z) 2

¶
(15)

clearly (14) and (15) imply that Uz ¡ Vz = [U; V ].

Example 6 Beginning from the family Á2 for g(z) = z and f (z) = z we also
have that the matrices
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U =

µ ¡z + z + a0 1
¡z2 ¡ z2 + 2zz + 2a0 (z ¡ z) ¡ 1 ¡ a2

0 z ¡ z ¡ a0

¶
;

and

V =

µ ¡z + z + a0 1
¡z2 ¡ z2 + 2zz + 2a0 (z ¡ z) + 1 ¡ a2

0 z ¡ z ¡ a0

¶

are solutions of (2).

We consider now full Kostant-Toda harmonic maps induced by the shift
matrix

¤ =

µ
0 1
0 0

¶

and its transpose ¤T .

Theorem 7 There exist full Kostant-Toda harmonic maps Á¤ and Á¤T , such
that

Á¡1
¤ (Á¤)z = ¤ = Á¡1

¤ (Á¤)z (16)

and

Á¡1
¤T (Á¤T )z = ¤T = Á¡1

¤T (Á¤T )z (17)

Proof. The proof of the Theorem reduces to determine Á¤ and Á¤T such

that (16) and (17) are satis…ed. Let Á¤ =

µ
a 1
b c

¶
be a Kostant matrix, such

that, (Á¤)z = Á¤¤. In this case we have

µ
az 0
bz cz

¶
=

µ
0 a
0 b

¶
(18)

from (18) it follows that a = 0, bz = 0 and cz = b, we now take b = 1; it implies
that c (z; z) = z + h(z) where h(z) is a smooth function. On the other hand,
the condition (Á¤)z = Á¤¤ asserts that

µ
0 0
0 cz

¶
=

µ
0 0
0 1

¶
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therefore h(z) = z + h0 where h0 2 C, thus

Á¤ =

µ
0 1
1 z + z + h0

¶
:

Now, in the same way it is easy to see that

Á¤T =

µ
z + z + h1 1

z + z + h1 + 1 1

¶

Notice that the full Kostant-Toda harmonic maps Á¤ and Á¤T are not in-
cluded in the family of solutions of the Theorem 2 and the Corollary 4. Its easy

to show that the other element of the base of sl2C, H =

µ
1 0
0 ¡1

¶
does not

generate a full Kostant-Toda harmonic map, since jHj 6= 0.

Corollary 8 The following full Kostant-Toda matrices

Áa
¤ =

µ
z + z + h0 1

1 0

¶
, Áa

¤T =

µ
1 1

z + z + h1 + 1 z + z + h1

¶

are full Kostant-Toda harmonic maps of D to GL2C.

Proof. It follows from the Theorem 3.

Remark 9 Consider the matrix S =

µ
1 0
s 1

¶
, then is obvious that S¡1 =

µ
1 0

¡s 1

¶
. Le us denote L = S¤S¡1, from (16) follows that

¡
Á¤S¡1

¢¡1 ¡
Á¤S¡1

¢
z

= L ¡ SzS
¡1 (19)

and

¡
Á¤S¡1

¢¡1 ¡
Á¤S¡1

¢
z

= L ¡ SzS
¡1 (20)

thus, (19) and (20) imply that if

Lz + Lz ¡
¡¡

SzS¡1
¢
z

+
¡
SzS

¡1
¢
z

¢
= 0 (21)

then Á¤S¡1 will be a harmonic map. After a straightforward calculation we can
see that the equation (21) is equivalent to the following equation
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µ
0 0

2szz 0

¶
=

µ ¡ (sz + sz) 0
¡2s (sz + sz) sz + sz

¶

hence, s = z ¡ z + s0 or s = z ¡ z + s1. In this case

L1 =

µ
z ¡ z + s0 1

¡ (z ¡ z + s0)
2 ¡ (z ¡ z + s0)

¶

and

L2 =

µ
z ¡ z + s1 1

¡ (z ¡ z + s1)
2 ¡ (z ¡ z + s1)

¶
:

The corresponding full Kostant-Toda harmonic maps are

ÁL1
=

µ
z ¡ z + s0 1

z2 ¡ z2 + (s0 + h0) z + (s0 ¡ h0) z + 1 + s0h0 z + z + h0

¶
;

ÁL2
=

µ ¡z + z + s1 1
¡z2 + z2 + (s1 ¡ h0) z + (s1 + h0) z + 1 + s1h0 z + z + h0

¶
:

The solutions ÁL1
and ÁL2

belong to the family Á1 and Á2 of the Theorem
2, respectively. Therefore, dressing ¤ we do not obtain new solutions of the
hamonic map equation.

Remark 10 Choosing two 2 £ 2 constant matrices A and B such that [A; B] =
0, we can construct a harmonic map that satis…es

Á¡1 (Á)z = A, Á¡1 (Á)z = B; (22)

clearly if Á satis…es (22) then Á is a harmonic map. Notice that, before we
considered the cases A = B = ¤ and A = B = ¤T , and full Kostant-Toda
harmonic maps were constructed. But, in general for A and B arbitrary constant
matrices then the corresponding Á are not full Kostant-Toda harmonic maps.

For instance, let us consider the Pauli matrix

¾ =

µ
1 0
0 ¡1

¶
:

The matrix
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Á¾ =

µ
a0e

z+z b0e
¡(z+z)

c0ez+z d0e¡(z+z)

¶
:

is a harmonic map if
¯̄
¯̄
µ

a0 b0

c0 d0

¶¯̄
¯̄ 6= 0, because

Á¡1
¾ (Á¾)z = ¾ = Á¡1

¾ (Á)z ;

but Á¾ is not a full Kostant-Toda harmonic map.
On the other hand we want to remark that the full Kostant-Toda harmonic

maps determined by the family Á1 and Á2 of Theorem 2 and Corollary 4 do not
satisfy (21) unless g and f are both constant functions.

3 More full Kostant-Toda harmonic maps

In the previous section, we have seen that using harmonic functions of the form

u (x; y) = c0f (x + iy) + c1g (x ¡ iy) + c2 (23)

where c0; c1 and c2 are complex numbers, it is possible to construct harmonic
maps of D into GL2C. But we do not have to restrict ourselves to this case,
in fact, as we shall now show the functions a, b and c can also have a very
di¤erent appearance to (23), i.e, we can also consider functions a, b and c of a
more general nature. These harmonic maps are connected with more analytic
methods. We recall that the equation (5) shows that if

czz = 0; azz = 0; bzz = 0; azcz + azcz = 0; b ¡ ac = 1. (24)

then Á given by (4) will be a harmonic map of D into GL2C.
Let D be a domain in C, with its boundary ¡ = @D compact in C. The

domain D is said to be regular if the Dirichlet problem has a solution for every
k 2 C (¡), i.e, if given k 2 C (¡) it is possible to …nd a function F that is
harmonic in D, continuous in the closure D and satis…es F (z) = k (z), z 2 D
(see [5])

Theorem 11 Let D be a regular domain and c 2 C2 (D) a harmonic function
in D, i.e, czz = 0; then for every z0 2 D there is a ball B (z0) = jz ¡ z0j < ²
and two functions a and b not unique, such that

azz = 0; bzz = 0; azcz + azcz = 0; b ¡ ac = 1 (25)

in B (z0).
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Proof. The purpose is to build solutions of (25) through a known harmonic
function c in D. The system of partial di¤erential equations in (25) has an
abundance of solutions having the desired property b ¡ ac = 1. In fact, let c be
a given harmonic function in D (we recall that D is regular). The solution of
the equation

azcz + azcz = 0: (26)

will be required to have one of the following two properties:

1) az = ¡cz, az = cz, (27)

2) az = cz , az = ¡cz,

in some closed ball of D with center z0. It is clear that those a for which
(27 ¡ 1) or (27 ¡ 2) is true are solutions of (26). Let us write (27 ¡ 1) as a
system of four equations for bu and bv (a = bu + ibv) :

bux = ¡vy, buy = vx, bvx = uy, bvy = ¡ux, (28)

where c = u + iv. Let z0 2 D, let B (z0) be a circular neighborhood of z0 such
that B (z0) ½ D. Hence, dbu = ¡vydx + vxdy and dbv = uydx ¡ uxdy are exact
di¤erentials in B (z0), bu and bv can be found by evaluating the following linear
integrals

Z (x;y)

(x0;y0)

[¡vt (s; t) ds + vs (s; t) dt] = bu (x; y) ¡ bu (x0; y0) ; (29)

and

Z (x;y)

(x0;y0)

[ut (s; t) ds ¡ us (s; t) dt] = bv (x; y) ¡ bv (x0; y0) ; (30)

along a line segment in B (z0), where bu (x0; y0) and bv (x0; y0) can be chosen
arbitrarily. But then bu (x; y) and bv (x; y) are uniquely determined in B (z0).
Now, since c is a harmonic function also in B (z0),

cz =
1

2

µµ
@u

@x
+

@v

@y

¶
+ i

µ
@v

@x
¡ @u

@y

¶¶
, (31)

is an analytic function in B (z0), then the Cauchy-Riemann equations for the
function cz are:

@

@x

µ
@v

@x
¡ @u

@y

¶
= ¡ @

@y

µ
@u

@x
+

@v

@y

¶
,

@

@y

µ
@v

@x
¡ @u

@y

¶
=

@

@x

µ
@u

@x
+

@v

@y

¶
,

(32)
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Hence, from (28) and (32) we have

@

@x

µ
@bu
@y

¡ @bv
@x

¶
= ¡ @

@x

µ
@bv
@x

¡ @bu
@y

¶
(33)

= ¡ @

@y

µ
¡@bv

@y
¡ @bu

@x

¶

=
@

@y

µ
@bu
@x

+
@bv
@y

¶

and also

@

@y

µ
@bu
@y

¡ @bv
@x

¶
= ¡ @

@y

µ
@bv
@x

¡ @bu
@y

¶
(34)

=
@

@x

µ
¡@bv

@y
¡ @bu

@x

¶

= ¡ @

@x

µ
@bu
@x

+
@bv
@y

¶
:

In view of (33) and (34) the function az will be an analytic function in B (z0).
Thus, azz = 0 in B (z0). Let us de…ne b = 1 + ac, then

bzz = azcz + azcz + azz + czz = 0:

It remains to take ² such that B (z0; ²) ½ B (z0). The construction of a and
b in the case (27 ¡ 2) is reduced to the case (27 ¡ 1), replacing a by ¡a.

Theorem 12 Let D be a regular domain in C, with its boundary ¡ = @D
compact in C . Then for every z0 2 D there is " > 0 for which one can …nd at
least two families of full Kostant-Toda harmonic maps of B (z0; ²) into GL2C.

Proof. This is a consequence of the Theorem 8.

4 Full Kostant-Toda harmonic maps into GL3C
For n > 2 one cannot hope to construct full Kostant-Toda harmonic maps even
in the case n = 3 by means of some simple algorithm, however the results of the
sections 2 and 3 allow us to also construct full Kostant-Toda harmonic maps of
D into GL3C starting with a full Kostant-Toda harmonic map for n = 2. We
have

Proposition 13 Let Á =

µ
a 1
b c

¶
be a full Kostant-Toda harmonic map,

where b ¡ ac = 1, then

12



bÁ =

0
@

a 1 0
b c 1
0 0 1

1
A

is a full Kostant-Toda harmonic map of D into GL3C.

Proof. It is easy to show that,

³
bÁ
´¡1

=

0
@

¡c 1 ¡1
b ¡a a
0 0 1

1
A ,

then, with a straightforward calculation we obtain

³
bÁ
´¡1 bÁz =

0
@

bz ¡ caz cz 0
baz ¡ abz ¡acz 0

0 0 0

1
A , : (35)

and

³
bÁ
´¡1 bÁz =

0
@

bz ¡ caz cz 0
baz ¡ abz ¡acz 0

0 0 0

1
A (36)

Since Á is a harmonic map, by (35) and (36) bÁ will be a harmonic map.
Now, a similar method enables one to obtain the following less evident result

Proposition 14 Let Á =

µ
a 1
b c

¶
be a full Kostant-Toda harmonic map,

where as always let us assume that b ¡ ac = 1. Then, the matrix

eÁ =

0
@

1 1 0
0 a 1
0 b c

1
A

itself is a full Kostant-Toda harmonic map of C into GL3C.

Proof. Recall …rst that Á is a harmonic map, then

czz = 0; azz = 0; bzz = 0; azcz + azcz = 0; b ¡ ac = 1.

On the other hand, we have
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³
eÁ
´¡1

=

0
@

1 c ¡1
0 ¡c 1
0 1 + ac ¡a

1
A ,

thus we see that

³
eÁ
´¡1 eÁz =

0
@

0 caz ¡ bz ¡cz

0 ¡caz + bz cz

0 baz ¡ abz ¡acz

1
A . (37)

But then it follows from (37) that

µ³
eÁ
´¡1 eÁz

¶

z

=

0
@

0 czaz + cazz ¡ bzz ¡czz

0 ¡czaz ¡ cazz + bzz czz

0 bzaz + bazz ¡ azbz ¡ abzz ¡azcz ¡ aczz

1
A (38)

=

0
@

0 czaz 0
0 ¡czaz 0
0 bzaz ¡ azbz ¡azcz

1
A ,

also, in a similar manner it follows at once that

µ³
eÁ
´¡1 eÁz

¶

z

=

0
@

0 czaz + cazz ¡ bzz ¡czz

0 ¡czaz ¡ cazz + bzz czz

0 bzaz + bazz ¡ azbz ¡ abzz ¡azcz ¡ aczz

1
A (39)

=

0
@

0 czaz 0
0 ¡czaz 0
0 bzaz ¡ azbz ¡azcz

1
A

now, the conclusion of the Theorem is clear from (38) and (39) taking into
account the equations at the begining of the proof.

In this part we complete the study of full Kostant-Toda harmonic maps from
a compact D from C into GL3C. The following Lemma is immediately veri…ed:

Lemma 15 The equation

uuzz ¡ uzuz = 0 z 2 D (40)

admits the following two solutions u+ (z; z) = ¹1 (z) ekz and u¡ (z; z) = ¹2 (z) ekz,
where ¹1 (z) and ¹2 (z) are functions de…ned in D di¤erent from zero and k 2 C.

We now construct more full Kostant harmonic maps

14



Proposition 16 Let c be a harmonic function in D. Then, the following ma-
trices

Á+ =

0
@

1 1 0
1 + c c 1

0 0 u+ (z; z)

1
A Á¡ =

0
@

1 1 0
1 + c c 1

0 0 u¡ (z; z)

1
A ,

where u+ (z; z) and u¡ (z; z) are the solutions of (40) described in the Lemma
15, are full Kostant-Toda harmonic maps from C into GL3C.

Proof. In fact, given a matrix of the form

Á =

0
@

a 1 0
b c 1
0 0 f

1
A ,

for which b ¡ ac = 1 and f 6= 0, we have

Á¡1 =

0
@

¡c 1 ¡ 1
f

b ¡a a
f

0 0 1
f

1
A ,

then, it should be noted that

Á¡1Áz =

0
B@

bz ¡ caz cz ¡fz

f

baz ¡ abz ¡acz afz

f

0 0 fz

f

1
CA (41)

and

Á¡1Áz =

0
B@

bz ¡ caz cz ¡fz

f

baz ¡ abz ¡acz afz

f

0 0 fz

f

1
CA (42)

from (41) and (42) it follows that in the particular case: a = 1, then b = c + 1
and obviously b is a harmonic function in D. On the other hand, in order for Á
to be a full Kostant-Toda harmonic map, is necessary that

ffzz ¡ fzfz = 0 z 2 D:

Now the Proposition is an inmediate consequence of the Lemma 15.
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5 Other harmonic maps into GL3C
In this section, we will construct other harmonic maps by a procedure that we
call “dimensional extension”. The central idea is already found in section 4. We
have the following

Lemma 17 Let Á =

µ
a 1
b c

¶
D ¡! GL2C be a harmonic map, then the

following matrices

©® =

0
@

®eG(z;z) 0 0
0
0

Á

1
A , ©¯ =

0
@ Á

0
0

0 0 ¯eF (z;z)

1
A (43)

and

©¾ =

0
@

a 0 1
0 ¾eE(z;z) 0
b 0 c

1
A (44)

will be harmonic maps of D into GL3C, whenever ®;¯ and ¾ are complex num-
bers di¤erent from zero and G, F and E are harmonic functions in D.

Proof. Let ® 6= 0, and let

©® =

0
@

®T (z; z) 0 0
0
0

Á

1
A

where Á D ¡! GL2C is a harmonic map, we shall choose T (z; z) such that ©®

is a harmonic map. Now,

©¡1
® =

0
@

1
®T¡1 (z; z) 0 0

0
0

Á¡1

1
A

and

(©®)z =

0
@

® (T (z; z))z 0 0
0
0

Áz

1
A ; (©®)z =

0
@

® (T (z; z))z 0 0
0
0

Áz

1
A

then

16



©¡1
® (©®)z =

0
@

T¡1 (z; z) (T (z; z))z 0 0
0
0

Á¡1Áz

1
A (45)

and similarly

©¡1
® (©®)z =

0
@

T ¡1 (z; z) (T (z; z))z 0 0
0
0

Á¡1Áz

1
A (46)

from (45) ¡ (46) we see that if

(lnT (z; z))zz = 0 (47)

then ©® is a harmonic map. Thus, equation (47) gives T (z; z) = eG(z;z) where
G (z; z) is a harmonic function in D. Similar arguments can be used to prove
that the matrix ©¯ and ©¾ are harmonic maps:

The previous results of the present paper allow us to construct many more
harmonic maps from D into GL3C. For instance, from (43) and (44) it follows
that

©® =

0
@

®eG(z;z) 0 0
0 z + z + h1 1
0 z + z + h1 + 1 1

1
A

and

©¯ =

0
@

0 1 0
1 z + z + h0 0
0 0 ¯eF (z;z)

1
A , ©¾ =

0
@

z + z + h1 0 1
0 ¾eE(z;z) 0

z + z + h1 + 1 0 1

1
A

are harmonic maps of D into GL3C.
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